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Tube bundles in cross-#ow vibrate in response to motion-induced #uid-dynamic forces; hence,
the resultant motions are considered to be a #uidelastic vibration. The characteristics of the
vibration depend greatly on the features of the #uid-dynamic forces and the structure of the
tube bundle. Therefore, in this study, the equations of motion of the tube bundle are derived.
From the viewpoint of vibration, each tube is not independent of the surrounding tubes because
its vibration is a!ected by #uid-dynamic coupling with the neighboring tubes. Thus, the
equations are a set of coupled equations and the solution is obtained as an eigenvalue problem.
The #uid-dynamic forces, which are indispensable in the calculation, have been obtained by
experiments using a vibrating tube in the bundle; it was found that the forces depend strongly
on the reduced velocity. Using these equations and the #uid forces, critical velocities of the tube
bundle vibration are calculated, and it is found that the critical velocity is strongly dependent
on the #uid-dynamic force characteristics, as they vary with the reduced velocity. Vibration
tests of the tube bundle have also been conducted, and the critical velocities obtained in the tests
are compared with the calculated values; agreement with the calculated values is good,
demonstrating that the method of calculation is useful. The e!ects of mass ratio, frequency
deviation and damping deviation of tubes in the bundle on the critical velocity are also
examined theoretically. It is found that it is better to treat the mass ratio and the logarithmic
decrement separately when the mass ratio is less than 10. Di!erences in natural frequencies
make the critical velocity large. Similarly, di!erences in logarithmic decrement may distribute
the vibration energy to other tubes and make the critical velocity large.
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1. INTRODUCTION

IT IS WELL KNOWN THAT A TUBE BUNDLE of a heat exchanger in cross-#ow sometimes vibrates.
Much research has been carried out on the problem over the past quarter-century, and
many things have been found. These researches have been discussed in detail in the
literature (Paidoussis 1983; Weaver & Fiztpatrick 1988; Price 1995). Price reviewed the
papers and classi"ed the theoretical models for tube-bundle vibration as follows: jet switch
models, quasi-static models, inviscid #ow models: unsteady models, semi-analytical models,
quasi-steady models, and computational #uid-dynamic models.

The details of each model are given in the literature. However, Price states that the
&&unsteady model'' is the most reliable one. The unsteady model is a method of calculation
using unsteady #uid-dynamic forces that act on the vibrating tube bundle. This may
0889}9746/02/010093#20 $35.00/0 ( 2002 Academic Press



Figure 1. Tube arrangement.
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physically be the most accurate model because the directly measured #uid forces are used.
In order to clarify the problems of tube vibration in cross-#ow, an analysis of the unsteady
model was carried out using the unsteady #uid-dynamic forces that were presented earlier
by Tanaka & Takahara (1980, 1981).

2. THEORY

2.1. EXPRESSION OF FLUID DYNAMIC FORCE ACTING ON TUBE BUNDLE

The tube bundle in a square array shown in Figure 1 was used in this study. Pitch-to-
diameter ratio is 1.33. The characteristics of the #uid-dynamic forces are discussed in
Tanaka & Takahara (1980, 1981), so only a brief explanation is given here. The #uid-
dynamic force that acts on a tube (O) in Figure 1 must be a function of the tubes
(O,¸,R,;, D) vibrating in the x- and y-directions.

If the #uid-dynamic forces are linear and superposable, the equations may be expressed
as follows:
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Here, k"1}5 corresponds to the tubes (O, ¸, R, ;, D), and X and > denote the vibration
displacements in the x- and y-direction, respectively. Each #uid-dynamic force coe$cient is
identi"ed by three su$xes. The "rst su$x is associated with the direction of the #uid force,
the second with the position of the vibrating tube and the third with the direction of tube
vibration. For example, c

xLy
is the coe$cient for the #uid-dynamic force on tube (O) in the

x-direction induced by the tube (¸) vibrating in the y-direction. In the case of a square array,
the following relations are obtained from the geometrical properties of the array:
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Using these relations, equation (1) and (2) may be expressed as follows:
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The vibration of the tube is assumed to be harmonic. Hence, the amplitude is expressed as

X"X
0

cos (ut). (5)

Using this equation, the force acting on the tube may be written as follows:
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where c
m

is the added mass coe$cient, c
d

is the damping coe$cient, c
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Equation (6) may be re-written in terms of an amplitude c
o

and phase di!erence u as
follows:

F"!

1
2

o;2X
0
c
0

cos (ut#u). (7)

However, the amplitude c
o
and the phase u are functions of the reduced velocity <

r
. The

negative symbol has been introduced on the right-hand side of equation (7), because the
direction in which the force works and the direction of the vibration displacement are
opposite to each other.

In the case of the unsteady model, it is reasonable to decompose the #uid-dynamic force
into three components: inertia force proportional to acceleration, the damping force
proportional to velocity and the sti!ness force proportional to the displacement. As the
inertia force is not dependent on the #ow velocity, the added mass is obtained easily by
a simple experiment or a calculation with potential #ow theory in still water. On the other
hand, it is very di$cult to obtain the damping and sti!ness forces. Nevertheless, if the
amplitudes and phase di!erences of the #uid-dynamic forces at each reduced velocity are
obtained, it becomes possible to obtain damping and sti!ness forces from equation (6) and
(7) as follows:
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2.2. EQUATION OF MOTION

The structural forces are considered "rst. It is assumed that the mass of a tube is uniformly
distributed and that the tube vibrates with vibration mode m that is a function of z. The
number of tubes constituting the bundle is considered to be N. The number of degrees of
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freedom is 2N, because each tube has two degrees of freedom, one in the x- and the other in
the y-directions. The #uid-dynamic force depends on the mode shape for each mode
i (14i42N ), so they are identi"ed using the su$x i. Here, superscript s is also added on
the top in order to clarify it as the structural force. Therefore, we de"ne the equivalent mass
of the tube as
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the equivalent damping coe$cient
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where m, ds
i
and u

i
are the tube mass per unit length, the logarithmic decrement, and the

angular frequency, respectively.
Next, the #uid-dynamic force is considered. The index j is similarly introduced to identify

the vibrating tube that generates the #uid-dynamic force. Let us discuss the #uid-dynamic
force on vibrating tube i induced by the vibration of tube j. In the case where the #ow is not
uniform along z-axis, each coe$cient is expressed as follows:
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Superscript f stands for the #uid-dynamic force.
The following nondimensional equivalent values are introduced next:
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By combining the structural forces and #uid-dynamic forces in each term, the following
matrices are obtained using the above nondimensional equivalent values:
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elements of sti!ness matrix
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whered
cij

is Kronecker's delta, equal to 1 for i"j, and otherwise equal to zero.
So, the equation of motion of tube i is expressed as follows:
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Let us now introduce a nondimensional form of equation (20). Using the frequency u and
the tube diameter d for nondimensionalization, we introduce
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where the amplitude X* and time q are nondimensional.
Each tube vibration has its own natural frequency u

i
. The ratio of the natural frequency
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The real frequency u at which the tube bundle vibrates in #uid #ow is not always equal to
the reference frequency u

0
or to the natural frequency u

i
, because the #uid-dynamic forces

change the frequency. It is impossible to know the frequency u beforehand, so the predictive
value j
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is introduced:
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Substituting equations (17), (18) and (19) into equation (20) and introducing the terms
X

i
and j
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de"ned above, the following nondimensional equation is obtained:
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This is a set of coupled equations of motion in dimensionless form and gives rise to
a second-order eigenvalue problem. The inertia force coe$cient, damping coe$cient and
sti!ness coe$cient of each #uid-dynamic force can be calculated with equations (8)}(10). In
addition, the #uid-dynamic forces corresponding to the su$xes i and j are obtained with
equations (3) and (4).

Equation (21) consists of the equations of motion of each tube, so it is possible to apply
this equation to tube bundles having various and complicated structural conditions. For
example, the tube bundles having di!erent characteristics for each individual tube, such as
di!erent natural frequencies, di!erent masses, di!erent vibration modes and di!erent
damping ratios, can be considered.

2.3. CALCULATION PROCEDURE

At "rst, it is necessary to assume a value for the reduced velocity, because the unsteady
#uid-dynamic force is a function of reduced velocity. Next, the predictive value j

Ia
must be

assumed. Since the frequency u in which the tube bundle will actually vibrate is not known,
it is convenient to assume that j

Ia
is equal to unity. By substituting these values into
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equation (21), the eigenvalues are obtained. The eigenvalues are generally complex, i.e.
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Then, the vibration is expressed as follows:
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The real part of the eigenvalue indicates the rate of increase or decrease of the vibration
amplitude with time, and the imaginary part is the frequency.

The vibration of the tube bundle has many degrees of freedom, and hence many
eigenvalues are obtained. However, the most susceptible vibration mode is that having the
largest value of the real part j

R
. The imaginary part j
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shows the ratio between the reference

frequency u
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and the frequency u in which the tube bundle actually vibrates.

If the calculated frequency j
I
di!ers more than a little from the estimated value j
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estimated value must be replaced by the calculated value as follows:
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The calculation must be repeated until the calculated value agrees with the estimated value.
The logarithmic decrement can be expressed as follows:
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If the structural damping is assumed to be zero at "rst, the logarithmic decrement that is
required to quench the vibration is expressed as
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The reduced velocity based on the reference frequency is as follows:
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3. VERIFICATION OF THE THEORY

3.1. DATA OF FLUID-DYNAMIC FORCE

The unsteady #uid-dynamic forces used in this analysis were determined from the same data
that were used previously (Tanaka & Takahara 1980, 1981). There are two types of tube
arrangements. One is a square array with a pitch-to-diameter ratio of 1)33, and the other is
a single row of tubes with a pitch-to-diameter ratio of 1)33. The #uid-dynamic forces consist
of the #uid-dynamic force coe$cients and phase di!erences as in equation (7). Added mass
coe$cients are also necessary. The #uid-dynamic coe$cients are listed in Tables 1 and 2.
The "rst row in each table shows the inertia force coe$cients due to added mass, and the
other rows show the #uid-dynamic force coe$cients and phase di!erences at each reduced
velocity.

3.2. RESULT OF CALCULATION

It is "rst assumed that the tube characteristics (mass, natural frequency, logarithmic
decrement) of all tubes are equal, in order to simplify the problem. Under such conditions,
the structural characteristics that a!ect the critical velocity are only the mass ratio k and the
logarithmic decrement d, as equation (21) shows. So, the e!ects of mass ratio and logarith-
mic decrement on the critical velocity were examined.



TABLE 1
Fluid-dynamic forces in a square tube array with a pitch to diameter ratio of 1)33
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C
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C
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0 C
m

!0)29 0)0 0)0 0)33 1)28 1)28 0)33 0)33 !0)29 !0)29
1)5 C

0
10)5 5)2 1)9 10)5 39)0 38)0 10)8 10)8 8)0 9)5

/ !174 100 101 1 !3 !3 5 !6 !172 175
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0
6)00 3)50 2)60 5)90 21)00 21)50 6)00 4)20 4)60 5)20

/ !171 106 68 2 !3)3 !6 10 !15 !169 174
2)5 C
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4)00 2)90 2)70 3)00 14)00 12)50 4)05 2)60 3)10 3)00

/ !165 116 70 5 !7 !13 15 !25 !165 172
3)0 C

0
2)80 2)40 2)40 1)30 9)80 7)50 2)65 2)10 1)95 1)60

/ !158 130 72 8 !4)1 !23 24 !32 !157 149
3)5 C

0
2)00 2)05 2)00 0)70 6)60 4)70 1)90 1)80 0)90 0)95

/ !146 144 70 !50 0 !32 33 !42 !120 137
4)0 C

0
1)40 1)75 1)80 1)00 5)00 3)80 1)45 1)65 0)33 0)82

/ !128 156 68 !83 1)4 !44 42 !54 !30 128
5)0 C

0
0)95 1)20 1)50 1)20 2)90 3)00 0)90 1)40 0)61 0)79

/ !104 176 66 !82 4 !51 53 !76 90 116
6)0 C

0
0)82 0)86 1)37 1)03 1)90 2)55 0)60 1)28 0)69 0)73

/ !85 !169 60 !74 9 !54 56 !94 100 102
7)0 C

0
0)77 0)64 1)28 0)90 1)25 2)20 0)46 1)25 0)46 0)67

/ !66 !155 56 !70 15 !55 51 !104 107 90
8)0 C

0
0)72 0)46 1)22 0)80 0)85 1)95 0)36 1)25 0)31 0)57

/ !49 !143 52 !70 22 !57 35 !107 112 83
10)0 C

0
0)63 0)30 1)12 0)69 0)39 1)55 0)27 1)25 0)24 0)47

/ !15 !124 50 !70 60 !60 11 !110 !116 79
12)0 C

0
0)55 0)25 1)05 0)66 0)28 1)25 0)23 1)05 0)21 0)45

/ 2 !110 50 !70 138 !62 !5 !110 119 80
15)0 C

0
0)50 0)22 0)99 0)64 0)60 1)00 0)21 0)87 0)17 0)44

/ 10 !96 49 !76 160 !66 !22 !110 122 83
20)0 C

0
0)46 0)21 0)90 0)62 0)81 0)82 0)19 0)69 0)16 0)39

/ 15 !72 48 !82 162 !70 !40 !105 128 92
25)0 C

0
0)45 0)23 0)81 0)60 0)94 0)70 0)21 0)59 0)15 0)36

/ 12 !64 48 !78 161 !70 !42 !96 132 100
30)0 C

0
0)45 0)24 0)73 0)60 1)00 0)65 0)24 0)53 0)15 0)32

/ 10 !53 48 !69 159 !64 !42 !87 137 109
35)0 C

0
0)44 0)26 0)67 0)60 1)05 0)60 0)27 0)50 0)15 0)30

/ 16 !44 47 !56 158 !58 !40 !80 140 115
40)0 C

0
0)44 0)27 0)62 0)60 1)08 0)56 0)30 0)51 0)15 0)27

/ 25 !36 47 !42 157 !52 !39 !75 143 123
50)0 C

0
0)45 0)29 0)56 0)59 1)10 0)50 0)34 0)53 0)15 0)24

/ 35 !24 46 !32 157 !42 !36 !68 148 133
60)0 C

0
0)45 0)32 0)52 0)59 1)10 0)47 0)36 0)56 0)15 0)21

/ 45 !14 46 !32 158 !36 !31 !62 152 141
80)0 C

0
0)45 0)36 0)48 0)59 1)11 0)40 0)36 0)58 0)15 0)17

/ 60 3 46 !37 161 !27 !24 !56 157 158
100)0 C

0
0)42 0)41 0)46 0)59 1)12 0)37 0)37 0)60 0)15 0)14

/ 72 17 47 !40 164 !20 !20 !52 162 162
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The calculated critical velocities of a square tube array (3 rows, 4 columns) of pitch-to-
diameter ratio 1)33 are shown in Figure 2 as a function of mass ratio. The ordinate is the
critical reduced velocity, and the abscissa is the logarithmic decrement. The critical vel-
ocities of a single row of tubes are shown in Figure 3. The critical velocities in both cases
vary in a complicated way with the logarithmic decrement. In particular, the line of critical
velocity of the single row array is divided into two regions.



TABLE 2
Fluid-dynamic forces on a single row of tubes with a pitch to diameter ratio of 1)33
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!0)28 0)0 0)0 0)31 1)11 1)11
1)5 C

0
10)0 4)2 2)0 10)8 29)0 29)0

/ !178 95 128 0 0 !2
2)0 C

0
5)40 2)65 1)28 6)10 17)00 17)00

/ !178 116 109 !3 0 !2
2)5 C

0
3)50 2)55 0)84 3)90 11)20 9)50

/ !174 131 91 !10 2 !6
3)0 C

0
2)50 2)25 0)72 2)75 8)00 5)80

/ !167 143 73 !21 5 !11
3)5 C

0
1)92 1)85 0)78 2)12 6)00 4)10

/ !156 154 65 !34 13 !19
4)0 C

0
1)55 1)50 0)83 1)72 4)70 3)10

/ !140 163 65 !40 23 !26
5)0 C

0
1)12 0)97 0)84 1)27 2)90 2)15

/ !75 180 72 !45 60 !30
6)0 C

0
0)89 0)64 0)77 1)00 2)00 1)72

/ !33 !166 80 !45 97 !33
7)0 C

0
0)73 0)44 0)67 0)83 1)60 1)53

/ !10 !152 86 !45 125 !38
8)0 C

0
0)63 0)33 0)55 0)70 1)36 1)37

/ 3 !132 89 !45 149 !43
10)0 C

0
0)52 0)22 0)41 0)54 1)13 1)06

/ 17 !69 92 !44 188 !53
12)0 C

0
0)47 0)19 0)34 0)45 1)00 0)81

/ 23 !45 91 !44 201 !59
15)0 C

0
0)43 0)23 0)27 0)37 0)89 0)55

/ 28 !32 82 !43 209 !61
20)0 C

0
0)38 0)33 0)22 0)31 0)78 0)33

/ 30 !20 36 !32 217 !62
25)0 C

0
0)35 0)40 0)18 0)28 0)70 0)26

/ 31 !15 29 !17 219 !60
30)0 C

0
0)33 0)43 0)17 0)27 0)65 0)24

/ 32 !12 26 !12 219 !59
35)0 C

0
0)31 0)47 0)16 0)27 0)60 0)23

/ 32 !10 25 !9 218 !57
40)0 C

0
0)30 0)49 0)15 0)26 0)57 0)23

/ 32 !9 24 !7 217 !55
50)0 C

0
0)28 0)53 0)14 0)26 0)53 0)23

/ 32 !8 22 !6 216 !52
60)0 C

0
0)26 0)56 0)13 0)26 0)49 0)23

/ 31 !7 20 !5 215 !51
80)0 C

0
0)24 0)61 0)12 0)26 0)45 0)22

/ 30 !6 18 !3 214 !50
100)0 C

0
0)23 0)63 0)11 0)26 0)43 0)22

/ 28 !6 17 !2 214 !49
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3.3. COMPARISON WITH VIBRATION TESTS

Vibration tests were conducted to elucidate the mechanism of #uidelastic instability. The
tubes were supported with elastic spars to vibrate in the x- and y-direction as shown in
Figure 4. The mass ratio of the tubes was changed by using solid and hollow cylinders. The
logarithmic decrement was varied by changing the material of the spars, using steel, nylon



Figure 2. Critical reduced #ow velocity for a square tube array versus logarithmic decrement (pitch ratio"1)33).

Figure 3. Critical reduced #ow velocity for a single row of tubes versus logarithmic decrement (pitch ratio"1)33).
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Figure 4. Tube supports for the vibration test. The tubes were 0)3m long, d"0)03 m. 1: rigid tube; 2: elastic
struts to allow the tube to vibrate in the x- and y-directions.

TABLE 3
Vibration tests on square tube array (in air #ow)

Mass ratio, k Logarithmic
decrement, d

Mass damping
parameter, kd

Critical velocity,
<

r

592)6 0)0045 2)67 12)8
1481 0)0040 5)92 14
1481 0)0061 9)03 14)5
592)6 0)0340 20)1 22

1481 0)0231 34)2 32
1481 0)0314 46)5 36
4444 0)0162 72)0 54
1481 0)0870 129)0 56

TABLE 4
Vibration tests on square tube array (in water #ow)

Mass ratio, k Logarithmic
decrement, d

Mass damping
parameter, kd

Critical velocity,
<

r

1)852 0)0023 0)00426 1)35
1)852 0)0061 0)0113 1)45
1)852 0)0297 0)0550 1)75
1)852 0)033 0)0611 1)8
1)852 0)087 0)1611 2)35
1)852 0)166 0)3074 2)7
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or acrylic resin. The experiment was conducted in air and in water. The test conditions and
test results are shown in Tables 3}5.

Figures 5 and 6 show the critical velocities obtained by calculation and experiment. The
experimental data are in good agreement with the calculations, except for a few points but
the general characteristics are almost the same. The results show that the unsteady model is
able to estimate the critical velocity well.



TABLE 5
Vibration tests on a single row of tubes (in air #ow)

Mass ratio, k Logarithmic
decrement, d

Mass damping
parameter, kd

Critical velocity,
<

r

1481)5 0)004 5)92 40
1481)5 0)006 8)89 41
592)6 0)023 13)6 44)5
4444 0)004 17)8 47)5
1481)5 0)028 41)5 68
1481)5 0)04 59)3 89
592)6 0)173 103)0 91
4444 0)031 137)8 125

Figure 5. Calculated and experimental critical velocities of the square tube array; dark ("lled) symbols are
experimental data points.
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4. PARAMETRIC STUDY

4.1. EFFECT OF MASS RATIO ON CRITICAL VELOCITY

In most of the researches on tube bundle vibration, the mass-damping parameter kd is used
as a standard variable. However, the mass ratio k and logarithmic decrement d are each
a fundamentally independent parameter. So, it is necessary to examine as to how far we can
apply the combined mass-damping parameter to the estimation of the critical #ow velocity.
The calculated reduced velocities were rearranged as a function of the mass-damping
parameter to get an answer to this question.

The critical velocity of the square tube array with a pitch ratio of 1)33 is shown in Figure
7. If the critical velocity is accurately a function of the mass-damping parameter only, the
lines of each mass ratio must be superimposed, giving only one line. When the mass ratio is
over 10, the critical velocities are located on almost the same line. This means that the mass
ratio has no important e!ect on the critical velocity. In the case of small mass ratios (less



Figure 6. Calculated and experimental critical velocities of a single row of tubes; dark ("lled) symbols are
experimental data points.

Figure 7. Critical velocity of square tube array versus mass-damping parameter.
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than 10), however, the lines are a little di!erent from each other. The critical velocity of mass
ratio 1)0 becomes 1)5 to 2)0 times greater in the mass-damping parameter range of 1}5. In
the case of a mass ratio of 1)8, the critical velocity gets closer to that of large mass ratio.
Experimental data are shown in the "gure.

Critical velocities of a single row of tubes are shown in Figure 8. The critical velocities
for large mass ratios can be put on the same line, but the velocities for small mass ratios
are on di!erent lines, in a similar way as for the square tube array. Experimentally
obtained critical velocities are also shown. In this case, the experiment was conducted in air
only. It is considered that the critical velocities of tube bundles having a mass ratio less than
10 cannot be treated as if they were a function of the combined mass-damping parameter
only.



Figure 8. Critical velocity of a single row of tubes versus mass-damping parameter.
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4.2. EFFECT OF STIFFNESS TERM AND DAMPING TERM

Chen (1983, 1998) showed that #uidelastic vibrations are of two distinct categories. One is
associated with the #uid-damping-controlled instability and the other with the #uid-
elastic-sti!ness-controlled instability. To study this further, the e!ects of the sti!ness and
damping terms of the #uid-dynamic force on the critical velocity were examined. Three
kinds of calculations were conducted using the unsteady #uid-dynamic forces. The "rst is
the calculation of critical velocity induced only by the damping term of the #uid-dynamic
force, the second is that induced by the sti!ness term only, and the third is a combined
instability that is induced by a combination of both terms. Inertia terms of the #uid-
dynamic forces were included in all cases. The mass ratio of the tubes for the calculations
here is 100)0.

The results of the calculation for the square array are shown in Figure 9. As the "gure
shows, the critical velocity of damping-controlled instability is considerably greater than
that of sti!ness controlled instability. This means that the sti!ness forces can supply more
energy to induce instability than the damping force. The critical velocity of the combined
instability is nearly equal to that of sti!ness controlled instability. In this case, the damping
force is added to the sti!ness-controlled instability. The #uid-dynamic force c

xox
has

a positive phase di!erence as shown in Table 1, so the vibration in the x-direction is
increased, but the vibration in the y-direction is suppressed because of the positive phase
deference of c

yoy
. This may be the reason why the critical velocities of sti!ness-controlled

instability and combined-controlled instability are almost at an equal level. By comparing
with experimental results, it is understandable that the combined model is the best.

The results of a single row of tubes are shown in Figure 10. When using the damping term
only, the critical velocity exists only in the low damping range. In the case of the sti!ness
term only, the line of critical velocity continues, while the critical velocity of combined
instability becomes separated. The phase di!erence of c

xox
on single row tubes is positive in

the reduced velocity range of 2)2}8)0, while the phase di!erence of c
yoy

positive is everywhere
(see Table 2). So, as Figure 10 shows, the damping-controlled instability occurs in the
reduced velocity range of about 2)2}8)0. The line of sti!ness-controlled instability, however,
continues everywhere. In the case of combined instability, the damping force in the low
reduced-velocity range assists the vibration, but it suppresses the vibration in the high
reduced-velocity range. The suppression e!ect in the reduced-velocity range of 10}20 is so



Figure 9. Critical velocities calculated by three methods (square tube array with k"100): ** - ** - -,
#uid-dynamic forces with damping terms only; - - - -, #uid-forces with sti!ness terms only;***, #uid-dynamic

forces with both sti!ness and damping terms; s, experiments in air; d, experiments in water.

Figure 10. Critical velocities calculated by three methods (a single row of tubes with k"100): * - * - -,
#uid-dynamic forces with damping terms only; - - - -, #uid-forces with sti!ness terms only;***, #uid-dynamic

forces with both sti!ness and damping terms; s, experiments in air.
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great that the combined instability line is divided into two parts. The experimental results
show that the combined model is the best.

4.3. EFFECT OF FREQUENCY DEVIATION

The natural frequencies of tubes in real plants display a considerable degree of scatter,
because of production errors, or for design purposes. In the case of U-tubes, for example,
each tube has an individual natural frequency. So, here the e!ect of frequency deviations
was examined. The model tube bundle used in the calculation is one of four rows and three



Figure 11. Tube arrangement used for frequency deviation calculation.

Figure 12. Critical velocity of tube array having di!erent natural frequencies, Case A (f
y
"f

x
for the array of

Figure 11): p, frequency deviation ratio.
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columns, as shown in Figure 11. The mass ratio of the tubes is 1481)5. It is assumed that
each tube has a di!erent natural frequency in the x-direction (perpendicular to the #ow), but
the mean value of the frequencies is unity. The calculations were carried out by changing the
frequency-deviation-ratio, which is de"ned as follows:

p"
4
+
i/1

D f
m
!f

i
D

f
m

, where f
m
"

f
1
#f

2
#f

3
#f

4
4

"1)0.

The tube in the "rst row has the highest natural frequency and that in the last row has the
lowest frequency. There are two cases of frequency di!erence: in Case A, the natural
frequency in the y-direction is the same as that in the x-direction ( f

y
"f

x
), and in Case B, the

natural frequency in the y-direction is twice of that in the x-direction ( f
y
"2f

x
).

The calculated critical reduced velocities are shown in Figures 12 (Case A) and 13 (Case
B). The critical velocity of the tube bundle having a small frequency deviation is a little



Figure 13. Critical velocity of tube array having di!erent natural frequencies, case B (f
y
"2f

x
for the array of

Figure 11): p, frequency deviation ratio.

Figure 14. E!ect of frequency deviation ratios on critical #ow: n, f
y
"f

x
for the array of Figure 11; h, f

y
"2f

x
for

the array of Figure 11; r, no interaction between tubes.
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larger than that of uniform frequency. However, when the deviation is larger than 0)2, the
critical velocity decreases, because the natural frequency of the tube in the last row becomes
small. The natural frequency in the y-direction in Case B is twice that of Case A. However,
the critical velocity in Case B is only a little larger than that of Case A. Therefore, the
vibration mode in the x-direction plays a more important role in the tube vibration.

The critical velocities versus frequency deviation are shown in Figure 14, where the
logarithmic decrement is 0)03. In Case A, where the frequencies of x- and y-directions are
the same, the maximum critical velocity occurs at a deviation ratio of about 0)02 and is
about 20% larger than that for no frequency deviation. In Case B, the maximum velocity is
for a deviation ratio of about 0)02 and is 25% larger. In all cases, the most susceptible tube is
in the last row with the least natural frequency. If there is no interaction of vibration with



Figure 15. E!ect of damping deviation on critical #ow velocity: h, logarithmic decrement of the reference tube is
changed while others are "xed at 0)03; j, logarithmic decrement of all tubes are changed.
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surrounding tubes, the critical reduced vibration must be proportional to the least natural
frequency of the last row. Assuming that all the frequencies of all the tubes are equal to the
least frequency in the last row, the critical velocities were calculated and the results are
shown in Figure 14. The critical velocity for no frequency deviation is considerably smaller
than the other velocities. From these results, it is reasonable to conclude that frequency
deviation prevents orderly interaction among tubes and makes the critical velocity larger.

4.4. EFFECT OF DAMPING DEVIATION

The logarithmic decrements of individual tubes are very di!erent in real heat exchangers.
The e!ect of deviations in the logarithmic decrement have also been examined. The mass
ratio for these calculations is 1481)5. The logarithmic decrement of all tubes is "xed at 0)03,
except for the reference tube that is in the second row of the second column in Figure 11.
The logarithmic decrement of the reference tube was changed from 0)001 to 0)03. The
calculated critical #ow velocities are shown in Figure 15 as a function of the logarithmic
decrement of the reference tube. The critical velocity gradually decreases with decreasing
damping of the reference tube. The critical velocity of a tube bundle in which all tubes have
a logarithmic decrement equal to that of the reference tube is also shown in the Figure 15 as
solid square points. The vibration of the reference tube that has a small logarithmic
decrement interacts with the surrounding tubes that have a larger one and, as a result, the
critical velocity becomes larger.

4.5. DISCUSSION

A tube bundle has many vibration modes. A sample of the vibration mode at a reduced
velocity of 30)0 is shown in Figure 16(a). The tube bundle has equal frequencies and equal
logarithmic decrement for each tube. The tubes interact with each other, such as to make
the easiest mode to vibrate. Considering these e!ects, it can be said that the coupling mode
has a very important role in tube bundle vibration. The sti!ness terms make a vibration
mode conducive to vibration and the damping terms work on this mode, so that the sti!ness
term and damping term work to mutually assist each other.



Figure 16. Vibration mode of tubes (reduced velocity"30)0 for the array of Figure 11): (a) uniform natural
frequency and uniform logarithmic decrement; (b) frequency deviation is 0)2 and logarithmic decrements are equal;
(c) frequency is equal and logarithmic decrement of a tube with second row of second column is 0)01, while others

are 0)03.
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A deviation in natural frequency makes the critical velocity large, because the discrep-
ancy of the frequency makes coupling di$cult. The vibration mode of tubes having
a frequency deviation of 0)2 is shown in Figure 16(b). The modal coupling between rows is
interrupted. This interruption makes the critical velocity high, but if the deviation is very
large, the critical velocity decreases because the smallest natural frequency in the last row
becomes very small. The deviation of damping makes the critical velocity small because the
small damping reduces the velocity. However, this characteristic is not very strong. The
vibration mode of tubes, where the damping of the tube in the second row of the second
column is 0)01 and the others are 0)03, are shown in Figure 16(c). The amplitudes of
vibration in the second row become larger as compared to the case of equal logarithmic
decrement. The change in vibration mode shows that the interaction of the vibration
distributes the energy and shares it with the other tubes.

5. CONCLUDING REMARKS

Tube bundle vibration has usually many degrees of freedom and many di!erent structural
characteristics. Fluid-dynamic forces are a!ected by the vibration of each tube. Hence, we
can talk about mutually excited vibration of each tube. The critical #ow velocities of a tube
bundle with various structural constraints were calculated and compared with the experi-
mental data. The experimental data have been found to be in good agreement with the
calculations, except for a few points, but the vibration characteristics were the same. So,
further studies of vibration can be made using these #uid-dynamic forces.

The mass ratio and logarithmic decrement must generally be used separately. The
frequency of a tube is changed with the #uid-dynamic force and, in the case of small mass
ratio, the e!ect is very large. In the case of a mass ratio larger than 10, the frequency is not
changed drastically. So, the mass-damping parameter is applicable in the mass-ratio range
larger than 10. However, the frequency changes signi"cantly in the range less than 10;
therefore, the mass ratio and logarithmic decrement must be used separately.

Summarizing the results, the following itemized conclusions may be made.

1. If the mass ratio is larger than 10, the critical velocity can be expressed as a function of
the mass-damping parameter. However, when the mass-ratio is less than 10, the mass ratio
and the logarithmic decrement must be used separately.
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2. Sti!ness terms and damping terms in the #uid-dynamic forces assist each other. So, the
vibration must be considered as a combined instability, i.e. neither purely damping-
controlled nor purely sti!ness-controlled.

3. When the deviation in frequency between the tubes is small, the critical velocity
increases. If the deviation is large, the velocity decreases because the smallest natural
frequency of the system becomes small; but the rate of decrease is slow.

4. The deviation in damping between tubes makes the critical velocity larger because the
interaction of the vibration distributes the energy and shares it with other tubes.

In these calculations, the coupled set of di!erential equations of each tube has been used,
so the e!ects of di!erent structural characteristics of each tube can be taken into account.
The unsteady #uid-dynamic forces at each reduced velocity are shown in Tables 1 and 2. We
expect that the calculation method and the #uid-dynamic force data will be widely used.
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APPENDIX A: NOMENCLATURE

C equivalent #uid-dynamic coe$cient
c #uid-dynamic coe$cient
D damping coe$cient
d tube diameter (m)
F #uid-dynamic force (N)
k sti!ness coe$cient
m tube mass of unit length (kg/m)
t time (s)
; gap velocity between tubes (m/s)
<

r
reduced velocity, <

r
"2n;/du

X, > displacement in the x- and y-direction (m)
x, y coordinate of tube vibration
z coordinate of cylinder axis
d logarithmic decrement
d
c

critical logarithmic decrement
d
cij

Kronecker's delta
g #ow distribution along z-axis (m/s)
j eigenvalue
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k mass ratio, k"m/od2

kd mass-damping parameter
m vibration mode of tube along z-axis
o density of #uid (kg/m3 )
u phase di!erence between tube vibration and #uid-dynamic force
X frequency ratio
u angular frequency (rad/s)
u

o
reference angular frequency (rad/s)
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